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Abstract

Proton pumping A-type cytochrome c oxidase (CcO) terminates the respiratory chains of

mitochondria and many bacteria. Three possible proton transfer pathways (D, K and H

channels) have been identified based on structural, functional and mutational data. Whereas

the D channel provides the route for all pumped protons in bacterial A-type CcOs, studies of

bovine mitochondrial CcO have led to suggestions that its H channel instead provides this

route. Here we have studied H channel function by performing atomistic molecular dynamics

simulations on the entire, as well as core, structure of bovine CcO in a lipid-solvent

environment. The majority of residues in the H channel do not undergo large conformational

fluctuations. Its upper and middle regions have adequate hydration and H-bonding residues to

form potential proton-conducting channels and Asp51 exhibits conformational fluctuations

that have been observed crystallographically. In contrast, throughout the simulations, we do

not observe transient water networks that could support proton transfer from the N-phase

towards heme a via neutral His413, regardless of a labile H-bond between Ser382 and the

hydroxyethylfarnesyl group of heme a. In fact, the region around His413 only became

sufficiently hydrated when His413 was fixed in its protonated imidazolium state but its

calculated pKa is too low for this to provide the means to create a proton transfer pathway.

Our simulations show that the electric dipole moment of residues around heme a changes

with the redox state, hence suggesting that the H channel could play a more general role as a

dielectric well.



Significance statement

Cytochrome oxidase is a widespread respiratory enzyme that conserves energy released when

oxygen is reduced by pumping protons across the membrane in which it is located. Here we

use atomistic simulations of the whole bovine enzyme to investigate properties of the H

channel, a structure that has been proposed to provide the pathway for pumped protons in

mammalian forms of the enzyme. These studies show that, although parts of the structure

could function in this manner, a gap persists. This gap could be bridged only if a buried

histidine becomes protonated. Based on these simulations we propose that the H channel acts

as a dielectric well, modulating effects of buried charge changes.

\body

Introduction

Cytochrome c oxidase (CcO) is a respiratory energy-transducing enzyme. It catalyzes

electron transfer from cytochrome c to molecular oxygen, conserving the released energy as a

charge and proton gradient across the membrane in which it is located (1). Mammalian

mitochondrial CcOs are composed of at least 13 different polypeptides (2). They are

members of a diverse ‘superfamily’ of homologous proteins (3-5), falling within the ‘A1’

subgroup, which includes many bacterial CcOs and quinol oxidases. All A1-type CcOs share

a remarkably similar catalytic core formed by three subunits (I, II and III), which house the

redox-active metal centres CuA, heme a, and a binuclear centre (BNC) composed of heme a3,

CuB and a catalytic tyrosine. Structures of several A1-type bacterial CcOs (6, 7) and of one

mitochondrial form (bovine) (8) have been solved at atomic resolution (see Fig. 1). The

electron transfer pathway and many details of the oxygen reduction chemistry have been

resolved (9-11). However, although the basic principles of redox-coupled proton pumping are

well established, the specific atomic details remain in dispute, particularly the roles of three

possible proton transfer pathways (D, K and H channels) that have been identified in the A-

type CcOs based on crystal structure data (9-11).

In bacterial CcOs, structural data, together with a wide range of biophysical and

spectroscopic studies, strongly support a model for proton/electron coupling that involves

only the D and K channels in internal proton transfers (9, 12, 13). The K channel delivers the

first two substrate protons into the BNC. The D channel provides part of the route for the

remaining two substrate protons and all four translocated protons. Experimental support for

these proton-conducting functions has come in particular from studies of mutant forms of



bacterial CcOs (14). However, some significant issues remain. For example, in all CcO

structures determined by X-ray crystallography, there is no connection for proton transfer

from Glu242, the residue at the end of the D pathway, to either the BNC or to the likely exit

route of the translocated protons. There is also the question of how the D channel could act as

a conduit for both substrate and translocated protons. Unless gated precisely, the protons

would always be driven into the BNC for exergonic water production, hence ‘short-

circuiting’ the coupling process, rather than being driven across the membrane against a

protonmotive force. One possible solution to these points has come from classical MD

simulations that suggest that water molecules dynamically reorganise at different stages of

the catalytic process to form a transient H-bonded link to either a proton trap above the hemes

or to the BNC (15-18). Recent multiscale reactive MD simulations performed on the Rb.

sphaeroides CcO structure have provided free energy profiles and predicted rates of internal

proton transfer from the top of the D channel to both the proton trap and the BNC for

wildtype (19) and decoupling mutants (20). Interestingly, internal proton tranfer rates

calculated from these simulations are found to be in good agreement with the kinetic data

from electrometric experiments (21). Direct experimental evidence for functional water

molecule reorganisation has come from FTIR studies of bovine and bacterial CcOs (22),

though their location(s) within the channels remain unclear.

In contrast, the third hydrophilic H channel has been suggested to conduct

translocated protons in bovine mitochondrial CcO, based upon structural and functional

studies (8, 10). This H channel (Fig. 1, panel B) is separate from the BNC and the D and K

channels. The lower part consists of a domain leading from mitochondrial matrix towards the

hydroxyethylfarnesyl and formyl groups of heme a. It is proposed to open and become

hydrated after the BNC has become reduced, creating a proton pathway for entry of four

protons into a proton-collecting array close to a bound Mg2+ ion ‘above’ the BNC (23).

Subsequent binding of oxygen closes this channel and one proton is proposed to be released

into the P phase with each reduction/oxidation of heme a via an amide bond gate between

Tyr440 and Ser441 (24) and an H-bonded network to Asp51 at the P phase surface (10).

Support has come from structural perturbations induced by redox/ligand state changes in the

water channel (25-28), the Asp51 residue (29) and the proposed proton-collecting site around

the bound Mg2+ (23). These observations, together with effects of H channel mutations on

coupling efficiencies in a chimeric bovine/human CcO construct (30, 31), have led to the

proposal that these structures provide the route for translocated protons in mammalian

mitochondrial CcOs. This contrasts with bacterial CcOs (32) where the H channel is less



complete, in particular lacking Asp51 and the YS residues whose amide linkage is proposed

to form a gate. Furthermore, mutations introduced into the bacterial H channel are without

effect (32), though some similar redox-induced crystallographic structural changes are

observed in a serine residue that influences the opening of the bovine water channel (Ser382

in bovine enzyme) (33-35). It also contrasts with yeast (Saccharomyces cerevisiae)

mitochondrial CcO:- this has a clear H channel (36) (though also lacking Asp51 and the

proposed YS gate) but mutations within it do not affect proton translocation, whereas D-

channel mutations induce effects similar to those induced in bacterial CcOs (37, 38). An

alternative role of the H channel has been suggested in bacterial and yeast CcOs as a

‘dielectric channel or well’, providing groups that can cooperatively reorient their

dipoles/charges in response to redox changes and hence modulate function (13).

Direct experimental testing of the functions of the H channel in mammalian forms of

CcO is challenging, particularly because of the difficulties in introducing suitable mutations

into the mitochondrially-encoded subunit I, and in direct kinetic observation of specific water

and proton movements. Considerable advances have been made in molecular dynamics (MD)

simulations of large protein structures embedded in aqueous media and/or membrane

bilayers, including large coupled electron transfer complexes (39, 40). Such simulations, in

conjunction with quantum mechanical (QM) calculations of metal center structures (41), have

been successfully applied to regions of CcOs in order to predict oxygen reduction mechanism

(42), water structure and protonic gating of the D channel in the vicinity of Glu242 (15, 18,

19, 43, 44) and behaviour of the K channel (45, 46). Here, we apply these methods to predict

the dynamic properties of the H channel in an atomic model of membrane-embedded bovine

CcO (see Models and Methods, and Tables 1-3) with focus on its possible role as a proton

channel and/or a dielectric well.

Results

H channel dynamics and hydration

We first analyzed the dynamics and number of water molecules in the H channel region.

Average numbers of water molecules were calculated over entire simulation trajectories by

counting water oxygens within 5 Å of key H channel residues (subunit I residues His413,

Ser461, Thr424, Ser454, Ser458, Arg38, Tyr440, Tyr441, Tyr371, and Tyr54, see Fig. 1).

These results show that almost all water molecules within the entire H channel region

exchange with the solvent during the simulation timescales but, in spite of that, their number

does not change significantly throughout the simulations (Table 4). For all C1 simulations,



the average number of water molecules ranges from 20-22 with the sole exception of C1-VI

(in which His413 was modeled in its cationic form, see Table 1). For the majority of C2

simulations, the number of water molecules in the H channel is found to fluctuate between 20

and 32, except for system C2-IV in which His413 was again modeled in its cationic form. To

get further insights into these dynamics, we performed additional analyses by dividing the H

channel into three regions: an upper region between the top of heme a and Asp51 that

includes residues 54, 371, 440 and 441; a central region adjacent to heme a that includes

residues 38, 424, 454 and 458; a lower region that includes residues 461 and 413 which spans

Asp407 in the N phase and the central region (Fig. 1B).

Upper region of the H channel

We first considered the upper region of the H channel containing polar amino acid residues

Tyr54, Tyr371, Tyr440 and Ser441. Structural data show that this region is relatively

hydrophilic and contains the majority of the crystallographically-defined H channel water

molecules (9 in fully oxidised, and 11 in fully reduced bovine CcO crystal structures 1V54

and 1V55, respectively (31)). Our simulations reveal additional hydration in this region (see

Tables S1 and S4). Crystallographic (29) and FTIR (47, 48) data indicate that Asp51 is

relatively buried and protonated in fully oxidised enzyme with its sidechain forming

hydrogen bonds with Ser441 and Ser205 of subunits I and II, respectively (10). Accordingly,

since all C1 simulations were performed with fully oxidised enzyme, all had Asp51

protonated. The hydrogen bond with the sidechain of Ser205 was found to be stable

throughout these simulations (Table 5), in agreement with the structural and FTIR data,

except for C1-I where the H-bond was found to be broken, leading to a larger average Asp51-

Ser205 distance and recruitment of several additional waters into this region (Table S1).

FTIR data indicate that reduction of heme a and/or CuA leads to Asp51 deprotonation

(47, 49). This is supported by the structure of the fully reduced enzyme which has been

modelled with deprotonated Asp51 that loses its bonding to Ser205 and becomes more

hydrated (10). For the majority of C2 simulations, performed on the experimentally

characterized P-type catalytic states and various redox states of heme a/CuA, we modeled

Asp51 in its deprotonated state (except C2-VI, see Table 2). In these cases, it was observed

that the H-bond between Ser205 and deprotonated Asp51 is broken (Table 5) and Asp51

orients towards the solvent. This change in orientation of Asp51 is correlated with a large

influx of water into the upper H channel region (Table 4), as also observed in the C1-I

simulation described above in which the Asp51-Ser205 bond was again broken. Overall, the

simulations are consistent with structural data that show that protonated Asp51 is relatively



buried and stabilized by H-bonding with Ser205, and that deprotonation leads to bond loss

and hydration. This behavior of Asp51 and the high hydration of this region is in accord with

the earlier suggestion (10) that there is a dynamic H-bond interconnectivity in the region that

could facilitate proton transfer. However, the reorientation of Asp51 and its associated

hydration increase do not induce any major conformational changes in the middle or lower

parts of the H channel between heme a and the N phase where viable proton conduction

pathways are less evident (see below).

It should be noted that the higher water occupancy in some C2 simulations (Table 4)

results primarily from influx of water molecules into the hydrophilic upper region of the H

channel in response to the loss of hydrogen bonding between deprotonated Asp51 and

Ser205. The data in Tables S1-S6 using C1 and C2 systems further illustrate that the

additional hydration associated with loss of the Asp51-Ser205 hydrogen bonding is primarily

confined to the upper region, whereas variations in hydration in the middle and lower part of

H channel are much smaller.

Middle region of the H channel

The middle section of the H channel, adjacent to heme a, potentially links Ser461 to the

upper H-bonded and hydrated network. It contains polar amino acid residues and 4 buried

water molecules in both oxidised (1V54) and reduced (1V55) crystal structures (Fig. 1). In all

simulations, residues Arg38, Thr424, Ser454 and Ser458 remain stable in their

crystallographic positions (see Fig. S1). The hydration level persists during the simulations

and, due to the rigid structure of this region, the average water occupancy does not change

much during the simulations in any of the states studied (Tables S2 and S5). The water

molecules do exchange with solvent waters and their number does fluctuate in some states

(Tables S2 and S5, see also Fig. 2), though the crystallographically-defined water sites

remain fully occupied (Fig. 3). Analysis of simulation trajectories reveal that the bound water

molecules are expelled by waters that transiently appear in the vicinity during the

simulations, and the exchanges occur on a nanosecond timescale. Overall, the simulation data

indicate that sufficient waters could appear in this region to create connectivity from S461 up

to the upper H-bonded network. However, the only protonatable residue is Arg38 which is

unlikely to deprotonate easily and most or all of any proton pathway would have to be

provided by waters in that region.

Lower region of the H channel

The lower section links Asp407 in the N phase to the middle region via residues His413 and

Ser461 (Fig. 1). His413, a partly conserved residue on which the H channel is named, is



located in a predominantly hydrophobic pocket with two crystallographically-defined water

molecules above and below (Fig. 1, see also Fig. S8). However, in the crystal structure of

fully oxidised enzyme there is a connectivity gap from there to Ser461, Ser458 and the two

water molecules above them. The sidechain of nearby Ser382 (see Fig. 1) hydrogen bonds to

the –OH of the hydroxyethylfarnesyl chain of heme a. In the fully reduced structure,

however, this H bond is broken and Ser382 moves such that a cavity is formed that has been

proposed to allow water to enter and hence allow proton transfer from the N phase via His413

into the middle region (23, 26). Indeed, in C1 simulations carried out with the oxidised form

of CcO, the hydrogen bond between the -OH groups of Ser382 and the hydroxyethylfarnesyl

chain of heme a persists, as do the two closest waters that are above Ser461/Ser458 (Fig. 4).

For C2 simulations this hydrogen bond tends to dissociate in both P-type catalytic

intermediate states or with the BNC reduced (Fig. 4). Hence, although this dissociation is

consistent with the structure of the FR state, the data show that dissociation of the H-bond is

not specifically correlated with any significant additional hydration of the cavity between

His413 and Ser461. In all simulations that failed to increase hydration in this region, the

common feature instead was that all had His413 in its neutral state; in all of these the low

hydration persists and the occupancy of the two water sites above and below His413 do not

fluctuate much (see snapshots in Fig. 3 panels A and C), including in those cases where the

BNC metals are reduced (C2-VII and C2-VIII). To further test this behaviour, two ~1 μs MD 

simulations were performed in the fully reduced (FR) state with the C3 system (Table 3).

Again, hydration remained minimal in the regions immediately above and below His413 in

these long time scale simulations, with only 1.6 ± 1.1 and 1.3 ± 0.8 water molecules within 5

Å of His413 and Ser461 in two simulation replicas. These conclusions are also supported by

data in Fig. 5 and Tables S3 and S6, which show that this low water occupancy persists

throughout the simulation times in all redox states studied for both C1 and C2 systems,

provided that the His413 is neutral. This suggests that there is a permanent barrier to proton

transfer in this region, regardless of the Ser382 conformation, in contrast to proposals based

on structural and FTIR data. These findings agree with observations in Rhodobacter

sphaeroides CcO (33) where the same type of structural change of the equivalent serine has

been observed. In this enzyme the H channel is not operative, and recent kinetic data on wild-

type and a Ser425Ala mutant show no major differences in their reaction kinetics or coupling

efficiencies (50).

A low pKa of His413 is in accord with a location that is surrounded by hydrophobic

residues (Fig. S2). However, if the BNC is oxidised, heme a does display a weak Em/pH



dependency over a wide pH range (51, 52), consistent with weak redox Bohr effects on one

or more groups. It was shown that this is linked to a small proton uptake from the inner (51)

or both (53) sides of the membrane upon reduction of heme a. Given its location, one of these

groups might conceivably be His413 which, if it became protonated, might influence the

surrounding region and its hydration level. In order to explore this further, we firstly

calculated the pKa of His413 by performing continuum electrostatic calculations on

simulation snapshots in different redox states of the enzyme. We observed that the reduction

of heme a causes an increase in the pKa of His413 of about 1.5 pKa units, but with values still

too low (pKa < 5) to result in significant protonation. This viewpoint is also supported by two

independent computational approaches (see Models and Methods).

Nevertheless, we simulated the effect of protonating His413 (total charge +1) on the

occupancy and dynamics of water molecules in the lower part of the H channel (Tables 1 and

2). In both C1 and C2 simulations, forced protonation of His413 does indeed induce more

water molecules to appear in its vicinity, providing connectivity between the N-side of the

membrane and His413, and between His413 and Ser461 (Figs. 3 and 5, and Tables S3 and

S6), in sharp contrast to the case of neutral His413, in which no such water wires form (Fig.

3, compare panels A and C with B and D). However, recalculation of its pKa using snapshots

from simulations with protonated His413 again indicated predicted pKas (< 5) too low to

support any significant His413 protonation with a concomitant increase in hydration. Hence,

these data tend to rule out the opening of the channel by this effect.

As an additional test of the stability of hydration in the lower region of H channel,

eight short MD simulations (three of setup C1-I and five of C3-II) were performed starting

with a fully hydrated H-channel and a neutral His413. In all of these, water occupancy in the

lower part of H channel rapidly declined within the first 5-20 ns (Figs. S3 and S4), strongly

supporting the notion that hydration above and below neutral His413 is not stable. Based on

C1-I simulations, we also reconstructed the free energy profile associated with the wetting of

the lower part of the H channel (Fig. S5) using the Dynamic Weighted Histogram Analysis

(54). These results further confirm that, when neutral, His413 destabilizes hydration in the

lower H channel by at least 2-3 kcal/mol.

Given the importance of charge and position of a proton in hydration and in proton

translocation through this pathway, we did separate classical and quantum

mechanical/molecular mechanical (QM/MM) MD simulations in which a proton was treated

explicitly (see Models and Methods). Firstly, data from multiple independent classical

simulations show that an H3O+ ion is unstable in the H channel, in particular in the lower



segment between His413 and Asp407. In all five independent simulations, the H3O+ ion

exited the region within first 15 ns of simulation time to the bulk aqueous phase at the N side

of the membrane. A similar scenario was observed when QM/MM MD simulations were

performed by simulating an explicit proton on water molecules connecting His413 to Asp407

(Fig. S2). Only when the proton was modeled on the water H-bonded to His413 did it form a

doubly protonated His413, whereas in various other cases, proton rapidly diffused towards

Asp407 (already during initial energy minimization, see also supplementary Video S1).

Interestingly, in a relatively longer 15 ps QM/MM MD simulation of protonated Asp407, the

proton never escaped the latter residue. In fact, the water chain connecting protonated

Asp407 to His413 disassembled (see Video S2) in agreement with classical simulations.

Overall the data from multiscale simulations suggest that proton uptake from the N

side of the membrane via His413 is strongly unfavourable because of both kinetic (absence of

water wire) as well as thermodynamic (low pKa of His413) reasons.

Redox coupled changes

Based on the simulation data presented above, the lower half of the H channel is unlikely to

provide a pathway for coupled proton translocation. However, it may be expected that redox

change of heme a is accompanied by some structural or hydration rearrangements in its

environment induced by the net charge change (13). Comparisons of simulation data of states

in which heme a is oxidised or reduced do not show any major differences in the dynamics of

residues or hydration in the region next to heme a. In addition, as shown above, a redox Bohr

protonation of His413 appears to be very unlikely. In order to explore more subtle possible

redox-coupled changes that may occur in this region, we calculated the electric dipole

moment of the sidechains of selected amino acid residues close to heme a (residues

Tyr54, Tyr371, Gln428, Arg38, Ser454, Ser458, Thr424, Ser382 and Ser461). The data from

multiple independent simulations in different redox states show that reduction of heme a

(compare C2-I vs C2-II, and C2-VII vs C2-VIII) is coupled to reduction in the magnitude of

electric dipole moment of nearby residues (Table 6, see also Fig. S6), consistent with the net

charge change in the iron/heme system from +1 (oxidised) to 0 (reduced). Although

polarization effects such as charge fluctuations are not accounted for in the simulations

reported here, both C1 and C2 systems give roughly the same magnitude for the oxidised

state and the subtle difference in electric dipole moment in different redox states is

consistently observed in the C2 simulations. Such changes are to be expected when a net

charge change occurs on a buried group and are consistent with a general function of part or

all of the H channel structure as a ‘dielectric well’ (13) where small concerted changes in



polarizable groups occur to counteract the buried charge change.

Discussion

We have performed fully atomistic classical MD simulations on the entire structure of CcO

and on various protonation and redox configurations on smaller 3-subunit model, with a focus

on the possible role of the H channel in redox-driven proton pumping. Data from multiple

independent simulations on both systems show consistent behavior in the main elements of

the H channel, much of which is consistent with crystallographic data. Overall, there are no

large scale conformational changes apart from those involving Asp51 and Ser382 that have

been described in structural work. Here, for clarity of discussion, we have divided the H

channel into three functional regions.

The upper region connects the top of heme a with Asp51 at the P phase border and

includes residues Tyr54, Tyr371, Tyr440 and Ser441. Crystallographic data show that this

region is hydrated and simulations indicate additional hydration, especially if Asp51 becomes

deprotonated, a state in which it tends to move out of its relatively buried location (29). FTIR

data (47, 49) have suggested that deprotonation is linked to heme a/CuA reduction, though

this is surprising since it is the opposite of a classical redox-linked Bohr effect (55). It is also

inconsistent with the -20 to -30mV/pH dependency of heme a redox potential when the BNC

is oxidised (51, 52) and even weaker pH dependency when the BNC is reduced and CO-

ligated (56). This anomaly is yet to be explained. Nevertheless, both the structural data and

the simulations performed here suggest that ample hydrated pathways are available in this

part of the structure to form possible proton relay pathways. Hence, it seems feasible that this

region could indeed form a potentially gated exit pathway to the P phase for protons

accumulated in the proton trap region.

The middle region of the H channel adjacent to heme a includes residues Ser458,

Arg38, Ser454, Gln428, Tyr371 and Tyr54. As shown here, these residues stay more or less

stable throughout the simulations. The few waters observed in crystal structures remain and

their number even increases somewhat in the simulations. Hence, though a relatively rigid

region and with Arg38 as the only protonatable residue (but with a high pKa), sufficient H-

bonding between residues and waters could be envisaged to provide a proton conducting

pathway.

However, proton connectivity between this region and the N phase at Asp407 is more

problematic. This lower region runs from Ser461 to Asp407 via His413. Only two water

molecules are observed in the crystal structures immediately above and below His413, which



is insufficient to form a proton conducting pathway. In oxidised CcO Ser382 makes an H-

bond to the –OH group of the hydroxyethylfarnesyl chain of heme a. However, in fully

reduced CcO this bond breaks and Ser382 moves into the helix X (10). This has been

proposed to form a cavity that hydrates this region sufficiently to enable proton transfer. In

the simulations Ser382 does undergo a conformational change that is in agreement with the

structural data. However, its dissociation from the hydroxyethylfarnesyl group does not

induce the postulated bridging of the gap between His413 and Ser461 with additional waters.

Indeed, the same type of structural change of the equivalent serine has been observed in

Rhodobacter sphaeroides CcO where an H channel is not operative (33), and in which recent

kinetic data on wild-type and a Ser425Ala mutant show no major differences in their reaction

kinetics or coupling efficiencies (50). It is not conserved in the structurally and biochemically

well-characterized B-type oxidase from Thermus thermophilus, the quinol oxidase from

Escherichia coli and various C-type oxidases (57). Hence, its conformational change may be

more associated with properties or stability of the heme a rather than having a channel-

opening function.

Our simulations show that this lack of water-based connectivity in the region around

His413 persists, as long as the latter is neutral, which is its calculated protonation state. Only

when simulations are performed with protonated His413 does rapid hydration and transient

water wire formation occur in the lower part of the H channel. However, the pKa of this His

is likely to be too low to be able to form its imidazolium state, even when heme a becomes

reduced. Firstly, its environment is rather nonpolar (Fig. S2). Secondly, continuum

electrostatic calculations indicate a very low pKa, even when heme a is reduced. Thirdly, the

weak Em/pH dependency of heme a (51, 52) shows that no single residue has a strongly

linked redox Bohr protonation. Therefore, since the neutral protonation state is very likely the

physiologically relevant state, we conclude that the absence of sufficient water density in the

lower part of the channel remains the major concern in models in which the structure

functions in conducting pumped protons across the structure. It might also be noted that

His413 is not well conserved in eukaryotic CcOs, being absent for example from yeast and

many insect and worm species, highlighting the notion that, if indeed the H channel is

operative as a proton channel, this function is unlikely to be widespread in eukaryotes.

Indeed, direct tests with mutants of S. cerevisiae CcO have shown that it does not function in

this way in this enzyme (11, 37, 38).

Overall, the data presented here are unable to support the viewpoint that H channel is

a proton pumping route in bovine CcO unless the unlikely protonation of His413 can be



demonstrated. An alternative (or perhaps in bovine CcO an additional) role for the H channel

in all A-type CcOs as a dielectric well of channel was suggested (13). In such a role, the

function of the more polar residues is to adjust their dipoles in response to the change of

charge on the buried heme when it changes redox state, since charge neutralisation is not

achieved with a redox Bohr protonation. Some evidence that this is occurring to some extent

comes here from the calculated overall electric dipole moment of the residues surrounding

heme a. Their polarity increases on oxidation of heme a, consistent with the net +1 charge of

this state. Whether the polarity of these groups could also be altered by allosteric effects of

supernumerary subunits or by ligand binding, hence providing a means for external factors to

modulate internal kinetic properties, remains to be tested experimentally.

Models and Methods

Model system construction

Three different model systems (C1, C2 and C3) were constructed from the oxidised bovine

CcO crystal structure (PDB id: 1V54) (31) in order to perform classical MD simulations. In

model system C1, the entire 13 subunit monomeric CcO was immersed in a lipid bilayer

formed by 50% phosphatidylcholine (DLPC 12:0/12:0), 30% phosphatidylethanolamine

(DLPE, 12:0/12:0) and 20% phosphatidylinositol (DMPI 14:0/14:0), which was then solvated

with TIP3 water molecules, and K+ and Cl- ions to account for 100 mM ionic strength. The

entire membrane-protein-solvent system was constructed by using CHARMM-GUI tools (58,

59) and consisted of ~390000 atoms. A second smaller model system (C2) comprising

~280000 atoms was also constructed to study different intermediates of the catalytic cycle of

CcO, and to test the consistency of results in comparison to the large model system C1. C2

consisted of the three core catalytic subunits (I, II and III) immersed in a hybrid lipid bilayer

formed by dianionic cardiolipin (CL, 18:2/18:2/18:2/18:2), phosphatidylcholine (PC,

18:2/18:2), and phosphatidylethanolamine (PE, 18:2/18:2), in a ratio of 1: 3.38: 3.05, which

mimics the composition of the inner mitochondrial membrane (see also ref. (17)). Water

(TIP3) was added as a solvent, and 100 mM ionic strength was established with Na+ and Cl-

ions. The third model system (C3 comprising ca. 130000 atoms) was also constructed to

study long timescale behaviour of hydration in the lower part of the H channel. For this, a

two subunit enzyme was immersed in a hybrid lipid bilayer (same as C2), and two

independent simulations of up to 1 μs each, as well as multiple short simulations of 15-30 ns, 

were performed in the fully reduced state of the enzyme (see Table 3).

Fully atomistic classical MD simulations were performed in different



redox/protonation states, as described in Tables 1 (C1), 2 (C2) and 3 (C3). All internal water

molecules present in the 1V54 atomic structure were retained. Standard protonation states at

pH 7 were used for all titratable residues except for those listed in Tables 1-3. All simulations

were performed using NAMD (60) software together with the CHARMM force field for

protein, lipids, water and ions (61, 62). Parameters for a classical H3O+ ion were taken from

an earlier study of Sagnella and Voth (63). The parameters for metal centers were obtained

from the earlier study by Johansson et al. (64). MD simulations were carried out at

physiological temperature and pressure using 1 or 2 fs time steps for systems C2 and C1/C3,

respectively. The PME method (65) as implemented in NAMD was used to treat long-range

electrostatics. The simulation trajectory data was saved every 10 or 100 ps, and Visual

Molecular Dynamics (VMD) software was used for trajectory visualization and analyses (66).

The C1 system in state I (oxidised, Table 1) was equilibrated for 100 ns, and the

resulting structure was used to initiate C1 II-VI simulations. In these further states, the

protonation states of functionally important residues and/or the protonation pattern within the

BNC were altered. The total simulation time for all C1 systems was ca. 1.3 μs. In the smaller 

C2 model systems, both redox (OX – oxidised, RED - reduced) states of metals and

protonation states of key amino acids were varied, with particular focus on the influence on H

channel structure of electron transfer from CuA to heme a (C2-II versus C2-I) and from heme

a to a BNC intermediate (C2-II versus C2-III), and of reduction of heme a/CuA (C2-VII

versus C2-VIII). The total simulation time of all C2 systems was ca. 2.2 μs and for C3 ~2.3 

µs.

Continuum electrostatic calculations were also performed on snapshots obtained from

MD simulations of system C2 to estimate pKas. Up to 100 simulation snapshots were chosen

to calculate the pKas in different redox/protonation states of the enzyme. The MEAD program

(67) was used to calculate intrinsic pKa and site-site interaction energies, and KARLSBERG

software (68) to estimate the final pKa of the residue by a full titration calculation of all

titratable sites in a three subunit enzyme using reference pKa values for Arg, Asp, Glu, His,

Lys, Tyr and propionate groups of 12.0, 4.5, 4.6, 6.2, 10.4, 9.7 and 4.8, respectively. In order

to further validate the obtained pKa values, we also performed pKa estimation by using

Propka (69, 70) and Alchemical (71) free energy simulations, as implemented in NAMD,

using a small model system containing only subunit I. Regardless of the method used, we

consistently obtained low pKa values for His413 (pKa <5).

Six QM/MM MD simulations were performed using Turbomole and Amber packages

(72-74). The QM region consisted of His413, Asp407 and water molecules around these



residues (see Videos S1 and S2). Link atoms (hydrogens) were introduced between Cα and 

Cβ atoms of His413 as well as Asp407. An extra proton was modeled on His413, on Asp407 

or next to the water molecules in the QM region (ca. 8.5, 6.2, 2.9, and 2.3 Å from Asp407),

followed by a 1000 step conjugate gradient geometry optimization, and molecular dynamics

at 310 K (Langevin thermostat) for 5-15 ps using 1 fs time step.

System stability

Analysis of simulation trajectories reveal that C1 large model systems stabilized with a root

mean square deviation (RMSD) plateaued in the range of 2 – 3 Å (Fig. S7). For C2 systems,

RMSD stabilized at 3 – 4 Å (Fig. S8). These data suggest that simulations had converged

sufficiently to be able to observe any rapid dynamics of water molecules in the H channel.

Simulations on model system C1 showed no large scale conformational changes in the

residues involved in the H channel induced by variations in possible ground state of the

oxidised BNC or by changes in the protonation states of the selected amino acid residues.

When final resulting structures of C1 I-VI simulations were compared for the positions of key

H channel residues (Arg38, Asp51, Tyr54, Tyr371, His413, Thr424, Tyr440, Tyr441, Ser454,

Ser458, and Ser461), the RMSD of all non-hydrogen atoms was smaller than 0.95 Å, and

their positions were remarkably similar to those in the crystal structure. A similar scenario

was observed when final snapshots of C2 simulations were compared. The RMSD for all C2

simulations was ≤ 0.9 Å, except for the system C2-II (RMSD of 1.02 Å). In spite of the 

differences in system sizes and lipid compositions of model systems C1 and C2, the

structures obtained from simulations are remarkably similar (Fig. S1).
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Figure legends

Fig.1. Structure of bovine CcO and key features of the H channel. A:- The 13 subunit bovine

CcO is shown in its approximate position embedded in a lipid bilayer. Subunits I, II and III

are in green, yellow and pink, respectively, with additional subunits in blue. B:- Details of the

H channel. In the text, residues that are components of the putative H channel are divided into

TOP (Y54, Y371, Y440, S441; shown in blue); MIDDLE (R38, T424, S454, S458; shown in

cyan; LOWER (H413, S461; shown in green). Other residues discussed in the text are D51 at

the P phase interface, its H-bonded partner S205 of subunit II, D407 at the N phase and S382

of helix X (see text for details). The inset shows a reoriented view to illustrate the H bond

between S382 and the hydroxyethylfarnesyl chain of heme a. Water molecules within the H

channel are shown as red spheres. Additional waters within 5Å of D51 or S205II at the P

phase, or within 5Å of D407 at the N phase, are shown as blue spheres. Drawn from

coordinates of oxidised bovine CcO in PDB 1V54 (31).

Fig. 2. Time dependencies of numbers of water molecules adjacent to heme a. Only water

molecules within 4 Å of the N and O atoms of the side chains of residue 461, 382, 458, 424,

38, 454, 371, 451, 54 and 428 are included. The plot shown is a running average of 100

simulation snapshots taken at 100 ps time intervals.

Fig. 3. Occupancy of water molecules in the neighborhood of His413 and heme a (yellow)

from simulations C1-I (A), C1-VI (B), C2-II (C) and C2-IV (D). Occupancy is displayed as

an isosurface with isovalues of 0.08 (A and B) or 0.10 (C and D). Instantaneous positions of

water molecules are shown as purple spheres, polar amino acid residues in green and basic

residues in blue. Hydrogens are not shown for clarity.

Figure 4. Time dependencies of Ser382 conformation and occupancy of water molecules.

Ser382 conformation is represented by the H-bond between the sidechain O atom of Ser382

and the O atom of the hydroxyethylfarnesyl group of heme a (black trace, see also Fig. 1B).

The numbers of water molecules within 6 Å of the latter are also plotted (red trace).

Figure 5. Time dependencies of occupancy of water molecules in the neighborhood of



His413. The plot shown is a running average of 100 simulation snapshots taken at 100 ps

time intervals. Only water molecules whose oxygen atoms are within 4 Å of the nitrogen

atoms of His413 sidechain are considered.
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Figure S1: Comparison between C1 and C2 simulations. Snapshots from C1-VI (brown) and

C2-IV (green) are compared. When the Cα of both subunits I (shown as cartoons) are aligned,

an RMSD of 2.2 Å is obtained, which is reduced to 1.1 Å when the loops are not considered.

Positions of H channel residues are shown as sticks and are very similar (RMSD of 1.2 Å, or

0.8 Å if only the backbone is considered).

Figure S2: Predominantly hydrophobic environment around H413. Sidechains of the residues

around H413 are shown as sticks and water molecules are shown as red spheres. Top panel:

Crystal structure (PDB 1V54). Middle panel: After 300 ns (setup C1-I) with H413 in its

neutral form. Lower panel: After 150 ns (setup C1-VI) with H413 in its cationic (+1) form.

Protonation of H413 attracts water molecules to the H channel (see main text). The pocket

occupied by H413 and the surrounding water molecules is shown as a surface.

Figure S3. Number of water molecules (oxygen atoms) within 8 Å of His413 from

simulations C3-II (five independent runs). All simulations started from a fully hydrated lower



region of the H channel.

Figure S4. Number of water molecules (oxygen atoms) within 8 Å of His413 from

simulations of C1-I (three independent runs). All simulations started from a fully hydrated

lower region of the H channel. For clarity, plots display a running average of 20 snapshots.

Figure S5. Free energy profiles for the hydration of lower region of H channel when His413

is neutral (top panel) or protonated (bottom panel). As reaction coordinate we have used rwat-

H413, the average distance between the imidazole ring of His413 and the center-of-mass of

the 10 water molecules closest to His413. The results for the protonated His413 (C1-VI

simulations, red) show a single minimum at rwat-H413=5.5 Å, representing a stable water

wire. Deprotonation of His413 (C1-I, blue) changes the free energy landscape, and the water

wire is no longer stable. Minima are found instead between rwat-H413=9-11 Å, which are not

compatible with a water wire connecting the bulk and the lower part of the H channel. Notice

that the zero of the energy scale correspond to the most stable conformation for each of the

systems.

Figure S6: Snapshots at different time intervals display the fluctuation of electric dipole

moment from simulations C2-I (red) and C2-II (blue). The amino acid side chains (yellow for

C2-I, and brown for C2-II) are shown (see also Table 6 in main text). Backbone is displayed

as white transparent ribbon, and low-spin heme is in licorice representation (green for C2-I

and purple for C2-II).

Figure S7: Root mean square deviation (RMSD) in Å vs simulation time (in ns) for C1

simulations. The structural alignment to zeroth simulation frame and RMSD calculations

were performed using Cα atoms. 

Figure S8: RMSD (in Å) vs simulation time (in ns) for C2 simulations. The structural

alignment to zeroth simulation frame and RMSD calculation were performed using Cα atoms. 

Only the first replicas of setups C2 I, II, VII and VIII were used for RMSD calculations.

Video S1: A ~5 ps QM/MM MD trajectory in which a proton is modeled next to a water

molecule 6.2 Å from Asp407.



Video S2: A 15 ps QM/MM MD trajectory in which Asp407 is initially protonated. The

water wire between protonated Asp407 and neutral His413 dissociates in agreement with

classical simulation data (see main text).

Still image for video S1.

Still image for video S2.


